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Note 

A Partial Transformation for Application 

to Perturbation Theory Configuration Interaction 

INTRODUCTION 

In the application of first-order perturbation theory to the implementation of 
configuration interaction (Cl) based on SCF orbitals, one is concerned only with 
double excitations of the type ij + uv, where i, j are in the occupied set of orbitals 
and U, v are in the virtual set of orbitals. Single excitations do not contribute to the 
second-order energy correction for closed-shell systems. 

If Slater determinants 4% and rpr differ by two spin orbitals such that spin orbitals i 
and j of Slater determinant (bk: are replaced by spin orbitals u and v of r$r , the matrix 
element between & and & is given in general by 

where 

<iu I I jv> = J/x+*(l) xu(l>W12) xj*C4 x&9 6 “IT, .l 

(g is a permutation operator which brings & and $r into maximum coincidence.) 
The integration implied in Eq. (1) is over space and spin coordinates; thus, spin 
integration can lead to a zero contribution from the second term. To evaluate these 
matrix elements, one need not complete the full four-index transformation from the 
starting atomic orbital basis set to the molecular orbital basis set [l, 21; rather, 
the special subset (iu 1 1 jv> of the completely transformed molecular orbital list is 
all that is required for the off-diagonal elements. The present paper describes an 
efficient procedure for achieving this special subset transformation (partial transfor- 
mation). 

The method described herein may also be of interest for Moller-Plesset theory 
calculations since the partial transformation method generates all the two-electron 
integrals needed for the second-order treatment. Pople et al. [2] have discussed the 
application of this perturbation theory approach and have shown for a series of small 
molecules that second-order Moller-Plesset theory describes a number of energy 
dependent properties better than conventional Hartree-Fock theory. 

1 This notation is similar to that of R. G. PARR, D. P. CRAIG, AND I. G. Ross, J. Chem. Phys. 18 
(1950), 1561, and is to be differentiated from the notation of R. J. BARTLETT AND D. M. SILVER, 
Chem. Phys. Left. 29 (1974), 199. 
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RATIONALE 

This partial transformation method is an adaptation of a previously reported full 
transformation method [3]. An important element in the procedure is the use of 
partial summations [4]. If we let ( pq 1 1 rs) be the set of starting atomic basis integrals 
and (iu 1 I@> be the final list, the following partial summations are necessary: 

(b) <iq I I&> = g cdiq I I rs>; (3) 
r=1 

(4 (iu I I h> = 5 c&u I I .b>. (5) 
s=1 

In the following discussion, N is the length of the expansion basis, nc is the number of 
closed shell orbitals, and nr is the total number of occupied orbitals. The orbitals 
are assumed to be serially occupied (1 < index of the doubly occupied orbital Qz, , 
nc + 1 < index of the singly occupied orbital <nT). 

As discussed by Bender [5], Diercksen [3], and Pendergast and Fink [6], the sum- 
mations in Eqs. (2)-(5) cannot be carried out as written without some manipulation 
of the lists input to, or produced by, these equations. The reason for this will become 
apparent in later discussions. In addition, the list shortening possible by retention 
of only those items necessary as opposed to retention of all N4 items in the complete 
lists and the possible exclusion of zero valued integrals are important considerations. 
For the input atomic basis integral list, the first of these savings makes use of the 
symmetric permutations of integral indices: 

(ab 1 1 cd) = (ab 1 I dc) 

= (ba I I de) 
= (ba I I cd) 
= (cd I I ab) 
= (cd I I W 
= (dc I I W 
= (dc I I ab). 

Thus only unique ab and cd pairs need be retained, resulting in 

N4/8 + N3/4 + 3N2/8 + N/4 

(6) 

(7) 
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entries. The ranges of the indices for this set are given by 

1 d WI < LabI for every [ab], 

1 d WI < wq, 
where 

[ub] = P(ub) = a(u - 1)/2 + b 

is the pair position of the pair ub in a list of unique pairs of a and b, 

1 \<b<u, 1 <CZ,<N, 

in which there are (N2 + N)/2 unique pairs. 
The list (iq [ 1 rs) created through the use of Eq. (2) should have the order 

l<r&N for every iqs, 1 < bl < PW for every i, 

1 ,(i<nT, 
(11) 

resulting in nT(N3 + N3/2 terms produced. The second partial summation, Eq. (3), 
then becomes the straightforward task of N multiplications and additions to form 
each member of a list (iq I 1j.s) where 

1 <‘j<i for every iqs, 1 < k/s1 < WV1 for every i, 
W) 

1 <i<nT. 

This Iist consists of l~r(~~r + 1) . N(N + 1)/4 total terms. 
Some manipulation of the list defined by Eq. (12) in concert with the application 

of Eq. (4) can produce the list of (iu 1 I js), 

1 <s<N for every izdj, nc+l<Zd<N for every ij, 

1 < [ijl G MTI, 
(13) 

which consists of N(N - nc) rz& + I)/2 terms. The last partial summation, Eq. (5), 
then becomes a straightforward exercise of N multiplications and additions to form 
each member of the output list (iu I I jv), 

1 < [jv]O < [iu]” for every iu, 

1 < [iu]O ,< [n,N]O. 
(14) 

In this last equation, 

[ub]O = PO(ub) = u(N - n,) + b - N, 

is the pair position of pair ub in the list generated by this method, with 

nc+l<bdN, 1 <a<?+. 

(15) 

(16) 
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The position of any (iu I I jv) in the partially transformed list is given by 

IQ, u,j, u) = ~{[iu]“([zq - l)} + [jU]O. (17) 

The number of operations required to accomplish the desired transformation via 
this algorithm for all (iu 1 ] ju) is 

&{N*n -k 3N3h2 -IT no) + N’(~T - 3nT2nc - ncnT) + iV(nT2nc2 - nTnc)}, (18) 

which reduces to 

SW*+ + 3N3(n2 + n) + N2(n - 3n3 - n2) + N(n* - n2)} (1% 

if nr = nc = n. This can be compared with the full transformation for which the 
total number of operations is 

$,$-gLN6 + $N* + +N3 + -&N2. (20) 

Here, the “Golden Rule” [4] has been followed as long as (N - nc) 3 nr . It should 
be noted that the second terms in Eqs. (17) and (18) may contribute significantly to 
the number of operations. For N = 60 and n values of 10, 20, and 30, (partial 
operations/full operations) . 100 values are 9.9, 23.5, and 38.7, respectively. Thus, 
the worst case considered (number of occupied orbitals =& of basis) requires less than 
40 % of the number of operations involved in the full transformation. 

The final list (iu ] ] jv) has the range (lnc + 1 ] 1 In, + 1) to (nTN 1 1 n,N), and 
has the following number of terms, 

~T(N - nc)(n,(N - nc> + 1)/z, (21) 

as opposed to the approximately N*/8 unique terms in the fully transformed list. 
For N = 60, and n values of 10,20, and 30 (the same values considered in the previous 
examples), the percent of partial to full list members is 7.5, 19.1, and 24.2, respectively. 

METHOD 

A flow scheme of the algorithm described herein is given in Fig. 1. The individual 
elements are described below. 

(1) Reorder input basis. An input integral list which contains more than just the 
unique set of integral values specified by Eq. (8) is required. Thus, such a list ( pq I I rs> 
must be expanded to include all integrals whose indices satisfy the following con- 
ditions: 

l<p<N,l<r<N for every [qs], 

1 < Ml < [NW. 
(22) 
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REORDER INPUT EASIS 

Eq. (2) 

1 
REORDER LIST 

FIG. 1. Flow scheme of transformation algorithm 

The unusual pairing of indices p with r (and q with s) rather than the more common 
pq (KS) pairing is required so that the “Golden Rule of Multiple Summation” [4} 
can be followed. The reordering uses the algorithm reported by McLean [4] which 
calls for the formation of blocks of integrals that contain all integrals with the unique 
set of indices pr for a given number of pairs qs. 

(2) Transform all i, Eq. (2). The expanded list is input to Eq. (2) to form a list 
<iq 1 I rs) whose indices satisfy Eq. (11). One needs to retain only part of the list 
generated by Eq. (2) in computer memory at any given time while producing those 
integrals with indices (iq 1 1 rs) for the range of qs values in the block being treated. 
This reduces the amount of storage required for the transformation, so that the core 
requirement is proportional to N 2. Only one reading of the input integral list is 
required to complete this partial summation. The ordering of Eq. (11) is maintained 
through the use of random access disk files. 

(3) Transform all j, Eq. (3). The second partial summation is accomplished 
easily due to the ordering of the previously produced list; again the entire list <iq I I js) 
satisfies Eq. (12). 

(4) Reorder list. The output list from Eq. (3) is reordered to satisfy 

l<q<N for every ijs, 1 <.S<N, 1 < [ijl < [wkl. (23) 

Blocks of integrals which contain all integrals with indices q and s for a given number 
of unique pairs zj are formed to facilitate the next steps of the transformation. 
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(5) Transform all U. The reordered list generated in the previous step is trans- 
formed according to Eq. (4). This is essentially the same type of operation as step 3. 

(6) Transform all u. The partial summation indicated by Eq. (5) may be applied 
as written due to the ordering of the list defined by Eq. (13) to form the final partially 
transformed list, Eq. (14). 

As discussed previously, the unique pairings of p with r and q with s are necessary 
for the “Golden Rule” to be followed. For this pairing the amount of work is roughly 
proportional to n,N4/2. If one retains the usual pairing convention of p with q and r 
with s and transforms in the index order i, U, j, and u, the number of operations is 
proportional to nTN4. 

CONCLUSION 

The total number of terms produced by the partial transformation is a small 
fraction of those produced in the full transformation. The reduction in the total 
number of terms is substantial and this is important for expeditious formation of 
matrix elements within the Perturbation Theory Configuration Interaction program. 

This method may be extended to include more than one core configuration; however, 
the techniques required depend upon the nature of the core configurations and the 
excitations allowed. In some cases the required integrals may be obtained just by 
extending the range of the occupied set to include all orbitals with fractional occu- 
pation in the set of core configurations. Such a case can be handled by a simple change 
in the definition Of rtT . However, when several core configurations are used, the 
interaction matrix elements may require matrix elements between con@urations 
which differ by only a single excitation. In such cases, the matrix elements are more 
complicated and a simple extension of the present approach is not possible. 

The method calculates all the integrals required for off-diagonal matrix elements 
in the method described by Siu and Hayes [l]. The diagonal matrix elements required 
for the method involve the integral sets (ii ] 1 jj} and (ij 1 1 ij) for every ij 1 < [ij]O < 
[NN]O. But there are only N2 total of these and they can be handled separately from 
the partially transformed list. 

We have not discussed savings available through symmetry blocking of the input 
list [7]. Even so, the work savings and reduction of list size make this method a desir- 
able way of handling perturbation theory configuration interaction calculations. 
This particular method has been implemented as part of the MOLE quantum 
chemistry system [8] and is an important element in realizing efficient PTCI calcu- 
lations. 
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